EGC220 Class Notes 2/14/2023

Baback Izadi

Division of Engineering Programs
bai@engr.newpaltz.edu

$$
r=\underbrace{\bar{\sim}+A C}_{\underbrace{\bar{A} B C+\bar{A} B \bar{C}}_{\bar{A} B+A C+\bar{A}+\bar{A})}}
$$

Basic Identities of Boolean Algebra

1. $X+0=X$
2. $X \cdot 1=X$
3. $X+1=1$
4. $X+X=X$
7 $X+\bar{X}=1$
5. $\overline{\bar{X}}=X$
6. $X \cdot 0=0$
7. $X \cdot X=X$

8. $X \cdot \bar{X}=0$
$\bar{c}+x C=(\bar{c}+x)(\bar{c}+t)$
9. $X+Y=Y+X$
10. $X Y=Y X$

Commutative
12. $X+(Y \pm Z)=(X+Y)+Z$
13. $X(Y Z)=(X Y) Z$ Associative
14. $X(Y+Z)=X Y+X Z$
$150 X+Y Z \Rightarrow X+Y)(X+Z)$
16. $\overline{X+Y}=\bar{X} \cdot \bar{Y}$
17. $\overline{X \cdot Y}=\bar{X}+\bar{Y}$

DeMorgan's

1. Simplify the following Boolean expression as much as possible.
a. $\begin{aligned} & \mathrm{ABC}+\mathrm{A} \mathrm{B}^{\prime}+\mathrm{ABC} \\ & \text { b. } \\ & \mathrm{X}+\mathrm{Y})^{\prime}\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}\right)\end{aligned}$
c. $\quad \mathrm{XY}+\mathrm{X}\left(\mathrm{XZ}+\mathrm{WZ} \mathrm{Z}^{\prime}\right)$
a. $A B\left(C^{C+C}\right)+\vec{A} B=A B+\bar{A} B$
(2) (7)

$$
=B(A+\pi)=B
$$

b. $(x+y)(\bar{x}+\bar{y})$

$\underset{w(z+\bar{z})}{(w z+w+X W}$
2. Without simplifying, find the dual of
a. $\left.A^{A}+\bar{C}\right)^{\prime}(A+B C+A C)(A+\bar{C})$

$$
\begin{aligned}
& \quad \bar{y}=(\bar{A}+B+\bar{D}(\bar{C}+\bar{D})) \\
& (B+A(\bar{A}+C+D))
\end{aligned}
$$

b. $\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{D}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}\right)+\mathrm{B}\left(\mathrm{A}+\mathrm{A}^{\prime} \mathrm{CD}\right)$

$$
\begin{aligned}
& (\underbrace{(\bar{A} B(\bar{C}+\bar{C} D)}_{\text {DUal }})(\underbrace{B(A+\bar{A} C D}_{\text {DUal }}) \\
& \underbrace{A B}_{\text {Deal }}+(\underbrace{(\bar{D}+\bar{C} D}_{\text {qua }}))(\underbrace{B+(\underbrace{A+\bar{A} C D})}_{\text {Doa }})
\end{aligned}
$$

3. Without simplifying, find the complement of

$$
\begin{aligned}
& F=A C+A B C+A C \\
& F=(\overline{\bar{A} \bar{C}})(\overline{A B C})(\overline{A \bar{C}}) \\
& =(A+C)(\bar{A}+\bar{B}+\bar{C})(\bar{A}+C) \\
& F=\frac{D / A B(D+C D C D+B(A+A C D)}{A B(D+\overline{C D})+B(A+\bar{A} C D)} \\
& =\overline{(\bar{A} B(\bar{D}+\bar{C} D)})(\overline{B(A+\bar{A} C D)}) \\
& =\overline{A B}+(\overline{\bar{B}+\bar{C} D}))(\bar{B}+(\overline{A+\bar{A} C D})) \\
& =(A+\bar{B}+\tilde{B}(C+\bar{D}))(\bar{B}+\bar{A}(A+\bar{C}+\bar{D}))
\end{aligned}
$$

4. Reduce the following Boolean expression to the indicated number of literals:
a. $\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}+\mathrm{AC}{ }^{\prime}$
to three literals
b. $\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{D}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}\right)+\mathrm{B}\left(\mathrm{A}+\mathrm{A}^{\prime} \mathrm{CD}\right)$
to one literal
(14)(7)(2)

$$
\text { (15) } x+y z=(x+y)(x+z)
$$

$$
\begin{aligned}
& \text { a. } \bar{C}(\bar{A}+A)+A B C \\
& \bar{C}+A B C \xrightarrow[x]{C}+\underbrace{A B}_{y} \underbrace{C}_{z}=(\bar{C}+A B)(\underbrace{C+C}_{1}) \\
& =C+A B
\end{aligned}
$$

$$
\begin{aligned}
& \bar{A} B \bar{D}+\bar{A} B \bar{C}+A B+B C D \\
& (=\bar{A} B \bar{D}+B(\bar{A} \bar{q}+A)+B C D \\
& =\bar{A} B_{D} \bar{D}+B(\bar{A}+A)(\bar{C}+A)+B C D \\
& =\stackrel{\overrightarrow{A B D}+A B}{A}+B \bar{C}+B C D \\
& =B(\bar{A} \bar{D}+A)+B(\bar{C}+C D) \\
& =B(\bar{A})(\bar{D}+A)+B(\bar{C}+c)(\bar{C}+\theta)
\end{aligned}
$$

$$
\begin{aligned}
& =B \bar{D}+A B+B C+B D \\
& =B+B+B+B C \\
& =B(\underbrace{1+A+C}) \\
& =B
\end{aligned}
$$

4. Reduce the following Boolean expression to the indicated number of literals:

$$
\begin{aligned}
& A^{\prime} B\left(D^{\prime}+C^{\prime} D\right)+B\left(A+A^{\prime} C D\right) \quad \text { to one literal } \\
& \text { different approach. } \\
& =\bar{A} B \bar{D}+\vec{A}_{B} \bar{C}+A B+\bar{A} \underbrace{1}=B \\
& =\bar{A} B(\underbrace{\bar{D}+\bar{C} D})+ \\
& (\bar{D}+\bar{C})(\underbrace{\bar{D}+D)}_{1} \\
& =\bar{A} B \bar{C}+\bar{A} B \bar{D}+A B+\bar{A} B C D \\
& \begin{array}{l}
\begin{array}{l}
B(A+\bar{A})(A+\bar{C}) \\
+\bar{A} B(\bar{D}+C)(\bar{D}+\bar{T}) \\
=A B+B \bar{C}+\bar{A} B D
\end{array} \\
+\bar{A} B C
\end{array}
\end{aligned}
$$

5. Find he complement of $F=X Y+Z$; Then show what $F F=0$ and $\underbrace{F+F}=1 \quad G=\bar{F}$

$$
\begin{aligned}
& \bar{F}=\overline{X Y+\bar{z}} \quad F \bar{F}=0 \\
& \begin{array}{c|c}
=\begin{array}{c}
x y+z \\
\bar{y} \\
\overline{x y} \cdot \overline{\bar{z}}
\end{array} & (x+y+\bar{z})(\bar{x} z+\bar{y} z) \\
(\bar{x}+\bar{y}) z & x y \bar{x} z+x y \bar{y} z+\bar{z} \bar{z} z+\underbrace{\bar{z}}_{\varnothing} \bar{y} z \\
& =0
\end{array} \begin{array}{l}
\varnothing \\
\end{array} \\
& F+F=1 \\
& =\underbrace{\bar{x} z+\bar{y} z+x y+\bar{z}+\bar{y} z+x y} \quad(x+\bar{z})\left(\begin{array}{c}
(\bar{z}+\bar{z}) \\
x y \\
x y
\end{array}\right.
\end{aligned}
$$

6. For function $\mathrm{F}=\mathrm{XY}+\mathrm{XY}^{\prime}+\mathrm{Y}^{\prime} \mathrm{Z}$

$$
\Rightarrow x(y+\bar{y})+\bar{y} z
$$

a. List the truth table.
b. If possible, simplify the function further.
c. Draw an AND OR implementation of the function.

$$
x+y z
$$

a.

7, For the following Boolean expression $F=X Y+X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z$, determine
a. Truth table
b. Sum of min terms
c. Product of max terms

Standard sum of products ${ }^{b} F=\operatorname{EM}(0,2,6,2)$

42	F	
$x y z$	F	
08	$0 \rightarrow m_{0}$	
00	0	0
0	0	$1 \rightarrow m_{2}$
01	1	0
10	0	
10	1	0
1	1	$1 \rightarrow m_{6}$
1	$1>m_{7}$	

c. $F=\pi M(1,3,4,5)$

7. For the following Boolean expression $\mathrm{F} /=\mathrm{XY}+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \mathrm{YZ}^{\prime}$, determine
a. Truth table

6. min sumula prod. a
d. Standard sum of products

$$
\begin{array}{l|ll}
42 & F & 6 \\
x y z & F m(0,2,6,7)
\end{array}
$$

$\left.\begin{array}{ll|lll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & i & \text { c. } F=\operatorname{Tin}(1,3,4,5) \\ 0 & 1 & 1 & 0 & d\end{array}\right)$

| 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 1 |

d. $F=\sqrt{\bar{x} \bar{y} \bar{z}+\bar{x} y \bar{z}}+x y \bar{z}+x y z=\bar{x} \bar{z}+$

10001 ez
101

| 1 | 1 | 10 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |
| 10 | | |

$$
\equiv\left(x+y+\frac{\bar{z}}{2}\right)(x+\bar{y}+\bar{z})(\bar{x}+y+z)(\bar{x}+1+z)
$$

$$
\begin{aligned}
& \text { F } F=\operatorname{\sum m}(1,3,4,5) \times y\left(\frac{3}{3}+z\right) \\
& \bar{F}=\bar{x} \bar{y} z+\overline{x y z}+x \bar{y} \bar{z}+x \bar{x} z \\
& F \equiv \overline{(\bar{x} \bar{z}})(\overline{x y z})(\overline{x \bar{y} \bar{z}})(x \bar{y} z)
\end{aligned}
$$

c. Product of max terms
b. $G=\operatorname{sm}(1,3,4,5)$
a.

A	B	C	F	G
0	0	0	1	0
0	0	0	1	
0	ϕ	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

d. $F=\bar{A} \bar{B} C+\bar{A} B C+$

$$
A \bar{B} \bar{C}+A \bar{B} C
$$

